Code :R5321306

III B.Tech II Semester(R05) Supplementary Examinations, April/May 2011 ADVANCED CONTROL SYSTEMS (Electronics & Control Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE questions All questions carry equal marks

1. A linear time-invariant system is characterized by the homogenous state equation.

 $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Compute the solution of the homogeneous equation, assuming the initial state vector $X_0 = \begin{bmatrix} 1\\ 0 \end{bmatrix}$

2. (a) The state space representation of a system is given below. Determine whether the system is completely controllable and observable.

Γ	-6	2	-4]			[1]	
$\dot{X} = $	-18	3	-8	X	+	3	ι
L	-6	1	-3			1	
$y = \begin{bmatrix} 1 \end{bmatrix}$	1 -1	2]X				

- (b) Define controllability and observability. Explain about Kalman's Test of controllability and observability.
- 3. With suitable exampal, explain how describing function analysis of nonlinear system is used for stability analysis?
- 4. Linear second order servo is described by the equation $\ddot{e} + 2\tau w_n \dot{e} + w_n^2 e = 0$, where $\tau = 0.15$, $w_n = 1$ rad/sec e(0)=1.5 and $\dot{e}(0)=0$. Determine the singular point. Construct the phase trajectory, using the method of isoclines.
- 5. (a) Determine whether or not the following quadratic form is positive definite. $Q = x_1^2 + 6x_2^3 + 3x_1x_2 + 6x_2x_3 - 4x_1x_3$
 - (b) Determine the stability of the origin of the following system $\dot{x}_1 = x_2$ $\dot{x}_2 = -x_1^3 - x_2$
- 6. (a) Show that the zero's of a scaler system are invariant under linear state feedback to the input.
 - (b) For a single input system explain pole placement by state feedback.
- 7. (a) Find the curve with minimum arc length between the point x(0) = 0 and the curve $\theta(t) = t^2 10t + 24$
 - (b) Discuss state variable and control inequality constraints.
- 8. Find the optimal control $u^*(t)$ for the system

$$\dot{X} = \begin{bmatrix} 0 & 1 \\ -10 & 0 \end{bmatrix} X + \begin{bmatrix} 0 \\ 10 \end{bmatrix} u$$
which minimize the performance index
$$J = \frac{1}{2} \int_{0}^{2} u^{2} dt.$$
Given $x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, x(2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

www.firstranker.com